Spider peripheral mechanosensory neurons are directly innervated and modulated by octopaminergic efferents.

نویسندگان

  • Alexandre Widmer
  • Ulli Höger
  • Shannon Meisner
  • Andrew S French
  • Päivi H Torkkeli
چکیده

Octopamine is a chemical relative of noradrenaline providing analogous neurohumoral control of diverse invertebrate physiological processes. There is also evidence for direct octopaminergic innervation of some insect peripheral tissues. Here, we show that spider peripheral mechanoreceptors are innervated by octopamine-containing efferents. The mechanosensory neurons have octopamine receptors colocalized with synapsin labeling in the efferent fibers. In addition, octopamine enhances the electrical response of the sensory neurons to mechanical stimulation. Spider peripheral mechanosensilla receive extensive efferent innervation. Many efferent fibers in the legs of Cupiennius salei are GABAergic, providing inhibitory control of sensory neurons, but there is also evidence for other neurotransmitters. We used antibody labeling to show that some efferents contain octopamine and that octopamine receptors are concentrated on the axon hillocks and proximal soma regions of all mechanosensory neurons in the spider leg. Synaptic vesicles in efferent neurons were concentrated in similar areas. Octopamine, or its precursor tyramine, increased responses of mechanically stimulated filiform (trichobothria) leg hairs. This effect was blocked by the octopamine antagonist phentolamine. The octopamine-induced modulation was mimicked by 8-Br-cAMP, a cAMP analog, and blocked by Rp-cAMPS, a protein kinase A inhibitor, indicating that spider octopamine receptors activate adenylate cyclase and increase cAMP concentration. Frequency response analysis showed that octopamine increased the sensitivity of the trichobothria neurons over a broad frequency range. Thus, the major effect of octopamine is to increase its overall sensitivity to wind-borne signals from sources such as flying insect prey or predators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory glutamate receptors in spider peripheral mechanosensory neurons.

Most mechanosensory neurons are inhibited by GABAergic efferent neurons. This inhibition is often presynaptic and mediated by ionotropic GABA receptors at the axon terminals. GABA receptor activation opens Cl- channels, leading to membrane depolarization and an increase in membrane conductance. In many invertebrate preparations, efferent neurons that innervate mechanosensory afferents contain g...

متن کامل

Distribution and function of GABAB receptors in spider peripheral mechanosensilla.

The mechanosensilla in spider exoskeleton are innervated by bipolar neurons with their cell bodies close to the cuticle and dendrites attached to it. Numerous efferent fibers synapse with peripheral parts of the mechanosensory neurons, with glial cells surrounding the neurons, and with each other. Most of these efferent fibers are immunoreactive to gamma-aminobutyric acid (GABA), and the sensor...

متن کامل

Peripheral synapses at identified mechanosensory neurons in spiders: three-dimensional reconstruction and GABA immunocytochemistry.

The mechanosensory organs of arachnids receive diverse peripheral inputs. Little is known about the origin, distribution, and function of these chemical synapses, which we examined in lyriform slit sense organ VS-3 of the spider Cupiennius salei. The cuticular slits of this organ are each associated with two large bipolar mechanosensory neurons with different adaptation rates. With intracellula...

متن کامل

First evidence of neurons in the male copulatory organ of a spider (Arachnida, Araneae).

Spider males have evolved a remarkable way of transferring sperm by using a modified part of their pedipalps, the so-called palpal organ. The palpal organ is ontogenetically derived from tarsal claws; however, no nerves, sensory organs or muscles have been detected in the palpal bulb so far, suggesting that the spider male copulatory organ is numb and sensorily blind. Here, we document the pres...

متن کامل

Identification of the neuropeptide transmitter proctolin in Drosophila larvae: characterization of muscle fiber-specific neuromuscular endings.

The cellular localization of the peptide neurotransmitter proctolin was determined for larvae of the fruitfly Drosophila melanogaster. Proctolin was recovered from the CNS, hindgut, and segmental bodywall using reverse-phase HPLC, and characterized by bioassay, immunoassay, and enzymatic analysis. A small, stereotyped population of proctolin-immunoreactive neurons was found in the larval CNS. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 2005